

Considerations about Data Processing,
Machine Learning, HPC, Apache Spark and GPU

Giang Nguyen, Ján Astaloš, Ladislav Hluchý

Department of Parallel and Distributed Information Processing
Institute of Informatics, Slovak Academy of Science

Dúbravská cesta 9, 845 07 Bratislava, Slovakia

{giang, astalos, hluchy}.ui@savba.sk

Abstract. Recently, the terms Internet of Things (IoT), Big Data and Machine
Learning become very hot topics in both research and commercial spheres.
IoT refers to the world of devices connected to the Internet, which is the way the
massive amount of data is continuously collected, concentrated and managed.
Raw data can also come from other processes such as information retrieval, web
monitoring, database systems and so on. Mining in such data means of analysis
in order to obtain usable results and/or knowledge. This paper presents several
considerations about large-scale data, data processing and data mining using ma-
chine learning techniques with technological backgrounds towards high perfor-
mance computing (HPC), Apache Spark and GPU that enable and accelerate the
whole process.

Contribution type: Work-in-progress paper

Keywords: data processing, data mining, machine learning, HPC, Spark, GPU

1 Introduction

It is clear that machine learning (ML) algorithms learn from data and data is de facto
the heart of many solutions. The availability of high performance infrastructures, tech-
nologies and available machine learning libraries in combinations with computational
and/or data intensive strategies open nearly unlimited possibilities for data mining
(DM). However, one important point is the flexibility of a solution design, which must
be done around, at least, the 3Vs (Volume, Velocity and Variety) of data towards effi-
ciency criterions such as resources, performance, cost efficiency, etc. A universal solu-
tion for the “Big Data” challenges does still not exist, however the coupling of strate-
gies and technologies upon mathematical backgrounds and data-centric approach based
on real requirements is a good starting point. In practical scenarios with big and large-
scale data contexts, the use of incremental algorithms is visibly increased [4][6] with
satisfied reported results of models’ performance in comparisons with traditional in-
memory algorithms.

mailto:%7D.ui@savba.sk

Considerations about Data Processing, Machine Learning, HPC, Apache Spark and GPU 242

2 Data mining using machine learning techniques

Nowadays, the global data production is continually increased by worldwide distributed
ubiquitous sensors for long-term monitoring. Mining in such data means of analysis in
order to obtain usable results and/or knowledge. Currently, ML techniques in general
and supervised learning approaches in particular, play the central role in many practi-
cal/commercial cases. In general, ML approaches can be divided [1] into:

• Traditional in-memory learning (offline learning) where whole data for training can
be loaded into machine memory. The main advantage of this approach is in many
existing algorithms, number of available libraries, each with numerous methods and
implementation improvements to achieve precise results. The disadvantage is the
memory limitations that imply only use of small data sets.

• Incremental learning (online learning) does not require the whole data to be loaded
into the machine memory at once. Instead, it loads the data in batches. These algo-
rithms use limited memory and limited processing time per item, therefore, the input
data set can be large-scale without memory limitation. On the other hand, the number
of available algorithms are limited in comparison to in-memory approach.

• Distributed learning: which is typically coupled with infrastructure i.e. DAS (Data
Analytics Supercomputer e.g. Apache Spark [2]). It is usually applied on very large
data sets, which do not fit into memory of one machine. DAS is usually utilized also
as a whole ecosystem with data processing, data integration and data management.

If a set of ready for use machine learning methods is extensive, their implementations
are also rich and available in many languages with many versions and improvements.
The most well-known ML libraries (or collections) are (Tab 1.):

Tab 1. The most well-known ML libraries

Library (impl. language) Strong points Weak points
Weka3 (Java) general purpose,

GUI, popular
small datasets,
GUI, popular

MOA (Weka related) data stream mining, concept
drift, recommender systems

R, Python (and libraries) statistics, ML, very popular R vs. Python
RapidMiner general purpose, DB con-

nection, popular

Scikit-Learn (Python) general purpose, popular small datasets
NLTK (Python)

Clojure
 general purpose, natural lan-
guage toolkit and text mining

small datasets

PyBrain (Python) neural network, reinforcement
learning, evolution, easy use

good for study and
experiments

MLLib (Scala, Java)

Spark distributed scalable ML
framework, growing community

coupled with in-
frastructure

Mahout (Java) Hadoop ML framework come with Hadoop
overhead

243 Work-in-progress paper

H2O.ai massively scalable Big Data
analysis, distributed processing

(Hadoop, Spark)

Shogun (C++) general purpose, designed for
large scale learning, kernel

methods, SVM, HMM

LIBSVM (C++)
LIBLINEAR (C++)

integrated software,
large-scale data

narrowed approach

Vowpal Wabbit (C++) fast out-of-core ML system, on-
line learning

limited number of
algorithms

XGBoost parallelized general purpose
gradient boosting library

narrowed approach

MatLab, GNU Octave scientific libraries math oriented

One of the most used data mining concept and methodology [8] is CRISP-DM (Cross-
Industry Process for Data Mining), which consists of six steps: Business Understand-
ing, Data Understanding, Data Preparation, Modeling, Evaluation and Deployment.
The Data Preparation step consists of sub-steps: Data Transformation, Exploratory Data
Analysis (EDA) and Feature Engineering. The group of the first five steps are also
called the development phase. The deployment step is also called the production phase.

Although the main interest upon DM/ML is broadly paid to the Modeling step and
algorithms, one important point remains the fact that ML algorithms learn from data.
Therefore, in practice, Data Understanding and Data Preparation can consume up to
80% of the entire time of every DM using ML techniques project. Data Preparation is
also slangy labeled Data Munging or Data Wrangling, which refer to strenuous work.
Certain problem-solving techniques e.g. Forward Selection, Backward Eliminations in
the Feature Engineering sub-step or grid-search in the Modeling step can lead to com-
putational intensive tasks especially when ML input data is large-scale or big. HPC
(high-performance computing) cluster can be utilized for concurrent training of models
in order to shorten the development time.

In the following parts, some practical notes around data processing and DM process
using ML techniques for commercial and research applications with IISAS participa-
tion in recent years are presented.

Malicious behavior detection in mobile devices log domain. When everyone owns
and uses mobile devices such as smartphones and/or tablets, the demand of cybersecu-
rity and situational awareness is pushing towards. This involved work was a part of the
six-month pilot research done for IBM Slovakia. The interest was if it is possible to
detect malicious behaviors of mobile devices based on collected logs of mobile devices.
Raw data - logs from mobile devices belongs to human-generated data class, which are
not so “Big” as machine-generated data. Data mining using ML techniques in this do-
main involved through following obstacles:

• Collected raw logs are extremely noisy for the specific detection purpose. The logs
contain a lot of information about continuous monitoring processes such us timing
(clocks, alarms, calendars), positions, accelerators, display setting and adapting, net-
work and power monitoring, scanning processes, etc.

Considerations about Data Processing, Machine Learning, HPC, Apache Spark and GPU 244

• Low occurrences of malicious behaviors - malware related activities, which caused
imbalanced classes of data used for supervised ML;

• Feature extraction for data with evolving characteristics i.e. number of applications
on mobile devices is changed based on users’ demands without any limitations;

• Privacy preserving data mining of personal sensitive information.
• DM process required thorough Data Understanding in collaboration with domain

experts, Data Preparation (especially EDA) and Feature Engineering. ML technique
applied in this case was simple supervised binary classification with incremental
learning. The obtained results were highly satisfied to distinguish malicious behavior
from the normal one.

Click-through-rate advertising: raw and ML data are really big in both development
and production phases. Applied analyzing techniques are e.g. reservoir (sub)sampling,
biases monitoring, smoothing, sliding windows with settable size, forgetting mecha-
nism, etc. came with adaptive online learning (retraining in combination with incre-
mental adaptation). ML data is highly imbalanced as usually in many commercial cases
that implies boosting one class against the second by reducing number of negative ex-
amples. Feature selections and feature combinations are also utilized to improve mod-
els’ performance. The production infrastructure is high-performance Hadoop cluster of
the Magnetic Media Online, Inc. technology company (USA).

Power utility for functional awareness of monitoring stations: raw input data in this
case is quite interesting, it is not “Big” in any one of 3Vs, but contains pure numerical
and structured data collected from monitoring stations during several years. Such data
can be called large-scale, which causes computational intensive tasks with memory
consumption in the development phase. The question was if it is possible to realize the
production on single machine with limited memory due to cost and energy efficiency.
The solution can be any of traditional in-memory approach in a machine with larger
memory, incremental learning or distributed learning with Spark installation in single
machine for the production. However, the use of the incremental learning to overcome
machine memory limitation can be the less painful way on both phases.

3 Machine learning and many-core accelerators

In the recent years the accelerators have been successfully used (not only) in machine
learning and deep learning applications [4]. Manufacturers often offer the possibility to
enhance hardware configuration with many-core accelerators to improve machine/clus-
ter performance. If we look at the list of top 500 most powerful supercomputers, we
can see the increasing trend in both number of systems that employ the accelerators and
their performance share. Most popular models of accelerators are based on MIC (Many
Integrated Cores) and GPU (Graphics Processing Unit) architectures. The accelerators
are able to offer significant performance increase for many application domains e.g.
the work [5] realized in collaboration between TUKE (Technical University of Košice)
and IISAS (Institute of Informatics, Slovak Academy of Science). The main feature of
the many-core accelerators is massively parallel architecture (e.g. new NVIDIA P100
accelerator contains 3840 CUDA cores), allowing them to speed up computations that

245 Work-in-progress paper

involve matrix-based operations, which is a heart of many ML implementations. Many
popular ML frameworks and libraries already offer the possibility to use GPU acceler-
ators to speed up learning process with supported interfaces in various languages e.g.:

Tab 2. Popular ML frameworks and libraries

Library
(impl. language)

Main purposes

Theano (Python) math expression compiler
Tensorflow

(C++, Python)
numerical computation library by data flow graphs

Keras (Python) minimalist, highly modular neural networks library capable
of running on top of TensorFlow or Theano

Caffe (C/C++,
Python, MatLab,

CLI)

deep learning framework for image processing

CNTK
(C++, CLI)

unified deep-learning toolkit that implements CNN and
RNN training for speech, image and text data

DL4J
(Java, Scala)

distributed deep-learning library written for Java and Scala,
integrated with Hadoop and Spark

Neon (Python) Nervana’s Python-based deep learning library
Torch (C/LuaJIT) NN and optimization libraries that puts GPUs first

MatConvNet Convolutional Neural Networks (CNNs) for MatLab

Some of them also allow to use optimized CUDA Deep Neural Network (cuDNN) li-
brary to improve the performance even further. Similar to the ML libraries mentioned
in Section 2, ML libraries with GPU support are also diverted in various implementa-
tion levels for various specific purposes such as image, voice and text processing.

The demand for even more powerful hardware for deep learning applications caused
that main manufacturer of GPU accelerators NVIDIA made considerable investments
to the development of the new architecture called Pascal and special purpose system
DGX-1 optimized for many-layered DNN. Among the new features most notable are
the „half-precision”, which allows to reach 21.2 Teraflops and 160 GB/s bidirectional
interconnect that significantly improves the scalability in multi-GPU systems.

The matrix-based operations on Apache Spark can be computationally accelerated
under same logic like GPU/CUDA acceleration. Here is a similar logic between Apache
Spark vs. GPU processing (not only) from ML viewpoint:

• If data fits into memory of one machine, GPU is faster, otherwise Spark;
• Spark logic is similar to CUDA host logic in the mean of SIMD processing;
• Spark network overhead vs. PCI-express transfer overhead;
• MapPartitions is like kernel launch, partitions are like CUDA blocks;
• Model parallelism vs. data parallelism: Data parallelism presents single instruction

to multiple data items, ideal workload for a SIMD computer architecture; Model
parallelism gives every processor the same data but applies a different model to it;
Hybrid approach presents combination of data and model parallelism.

Considerations about Data Processing, Machine Learning, HPC, Apache Spark and GPU 246

Potential benefits1, 2 of using GPUs to further accelerate Spark performance is also done
with positive results.

4 Conclusions

This paper presents a few considerations about working and mining in large-scale data
using ML techniques in our department in recent years. We hope that such notes are
useful for readers with nearby research interests and would like to thank to colleagues
and reviewers for consultations and advices on the paper preparation.

Acknowledgements: This work is supported by projects VEGA 2/0167/16 and
EGI-Engage EU H2020-654142. Simulations and technical realization are realized on
the hardware equipment obtained within the project SIVVP ERDF ITMS
26230120002.

Remarks: In addition to standard HPC computational power, SIVVP3 (Slovak Infra-
structure for High Performance Computing) HPC clusters are also enhanced by GPU
accelerators NVIDIA M2050/M2070 (448 CUDA cores) and K20 (2496 CUDA cores)
to allow researchers from Slovakia to use GPU accelerated systems for research pur-
poses. The installed GPU capacity is as follows: Institute of Informatics SAS, Brati-
slava: 16x K20 + 2x M2070; Matej Bel University, Banská Bystrica: 6x K20 + 2x
M2070; Technical University of Košice: 2x K20 + 2x M2070; Institute of Experimental
Physics, Košice: 10x K20 + 32x M2070; University of Žilina: 2x M2070; Slovak Uni-
versity of Technology in Bratislava: 8x M2050.

References

1. Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A.: A survey on concept drift
adaptation. ACM Computing Surveys (CSUR). 2014 Apr 1;46(4):44 pages.

2. Karau H., Konwinski A., Wendell P., Zaharia M.: Learning Spark. Published by O’Reilly
Media, Inc. © 2015 Databricks, 242 pages, ISBN: 978-1-449-35862-4.

3. Lacey G., Taylor G. W., & Areibi, S. (2016). Deep Learning on FPGAs: Past, Present, and
Future. arXiv preprint arXiv:1602.04283.

4. Lopes N., Ribeiro B.: Machine Learning for Adaptive Many-Core Machines - A Practical
Approach. Studies in Big Data, Volume 7, Springer International Publishing Switzerland,
2015, 251 pages, ISBN 978-3-319-06937-1, ISSN 2197-6503.

5. Naščák D., Koštial I., Mikula J., Olijar A., Astaloš J.: Acceleration of simulation models for
raw materials thermal treatment. 12th International Carpathian Control Conference:
ICCC´2011, pp. 207-212, ISBN 978-161284359-9.

6. Rozinajová V. et al: Otvorené smery výskumu v oblasti dátovej analytiky. WIKT 2015 pro-
ceedings, pp.4-7, ISBN 978-80-553-2271-1.

1 http://www.slideshare.net/continuumio/gpu-computing-with-apache-spark-and-python
2 http://www.nextplatform.com/2016/02/24/hadoop-spark-deep-learning-mesh-on-single-gpu-

cluster/
3 SIVVP - Slovak Infrastructure for High Performance Computing (http://www.sivvp.sk/)

247 Work-in-progress paper

7. Sumeet Dua and Xian Du: Data Mining and Machine Learning in Cybersecurity. CRC Press,
Taylor & Francis Group, 248 pages, 2011, ISBN-13 978-1-4398-3943-0.

8. Vadovský, M., Michalik, P., Zolotová, I. and Paralič, J.: Better IT services by means of data
mining. IEEE Int. Symposium on Applied Machine Intelligence and Informatics SAMI
2016, pp. 187-192, 2016, ISBN 978-146738740-8.

