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Abstract. Recently, the terms Internet of Things (IoT), Big Data and Machine 
Learning become very hot topics in both research and commercial spheres. 
IoT refers to the world of devices connected to the Internet, which is the way the 
massive amount of data is continuously collected, concentrated and managed. 
Raw data can also come from other processes such as information retrieval, web 
monitoring, database systems and so on. Mining in such data means of analysis 
in order to obtain usable results and/or knowledge. This paper presents several 
considerations about large-scale data, data processing and data mining using ma-
chine learning techniques with technological backgrounds towards high perfor-
mance computing (HPC), Apache Spark and GPU that enable and accelerate the 
whole process.   
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1 Introduction 

It is clear that machine learning (ML) algorithms learn from data and data is de facto 
the heart of many solutions. The availability of high performance infrastructures, tech-
nologies and available machine learning libraries in combinations with computational 
and/or data intensive strategies open nearly unlimited possibilities for data mining 
(DM). However, one important point is the flexibility of a solution design, which must 
be done around, at least, the 3Vs (Volume, Velocity and Variety) of data towards effi-
ciency criterions such as resources, performance, cost efficiency, etc. A universal solu-
tion for the “Big Data” challenges does still not exist, however the coupling of strate-
gies and technologies upon mathematical backgrounds and data-centric approach based 
on real requirements is a good starting point. In practical scenarios with big and large-
scale data contexts, the use of incremental algorithms is visibly increased [4][6] with 
satisfied reported results of models’ performance in comparisons with traditional in-
memory algorithms. 
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2 Data mining using machine learning techniques 

Nowadays, the global data production is continually increased by worldwide distributed 
ubiquitous sensors for long-term monitoring. Mining in such data means of analysis in 
order to obtain usable results and/or knowledge. Currently, ML techniques in general 
and supervised learning approaches in particular, play the central role in many practi-
cal/commercial cases. In general, ML approaches can be divided [1] into: 

• Traditional in-memory learning (offline learning) where whole data for training can 
be loaded into machine memory. The main advantage of this approach is in many 
existing algorithms, number of available libraries, each with numerous methods and 
implementation improvements to achieve precise results. The disadvantage is the 
memory limitations that imply only use of small data sets.  

• Incremental learning (online learning) does not require the whole data to be loaded 
into the machine memory at once. Instead, it loads the data in batches. These algo-
rithms use limited memory and limited processing time per item, therefore, the input 
data set can be large-scale without memory limitation. On the other hand, the number 
of available algorithms are limited in comparison to in-memory approach.  

• Distributed learning: which is typically coupled with infrastructure i.e. DAS (Data 
Analytics Supercomputer e.g. Apache Spark [2]). It is usually applied on very large 
data sets, which do not fit into memory of one machine. DAS is usually utilized also 
as a whole ecosystem with data processing, data integration and data management. 

If a set of ready for use machine learning methods is extensive, their implementations 
are also rich and available in many languages with many versions and improvements. 
The most well-known ML libraries (or collections) are (Tab 1.): 

Tab 1. The most well-known ML libraries 

Library (impl. language) Strong points Weak points 
Weka3 (Java) general purpose,  

GUI, popular 
small datasets, 
GUI, popular 

MOA (Weka related) data stream mining, concept 
drift, recommender systems 

 

R, Python (and libraries) statistics, ML, very popular R vs. Python 
RapidMiner general purpose, DB con-

nection, popular 
 

Scikit-Learn (Python) general purpose, popular small datasets   
NLTK (Python)  

Clojure 
 general purpose, natural lan-
guage toolkit and text mining 

small datasets 

PyBrain (Python) neural network, reinforcement 
learning, evolution, easy use 

good for study and 
experiments 

MLLib (Scala, Java)  
 

Spark distributed scalable ML 
framework, growing community 

coupled with in-
frastructure 

Mahout (Java) Hadoop ML framework come with Hadoop 
overhead 
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H2O.ai massively scalable Big Data 
analysis, distributed processing 

(Hadoop, Spark) 

 

Shogun (C++) general purpose, designed for 
large scale learning, kernel 

methods, SVM, HMM 

 

LIBSVM (C++) 
LIBLINEAR (C++) 

integrated software,  
large-scale data 

narrowed approach 

Vowpal Wabbit (C++) fast out-of-core ML system, on-
line learning 

limited number of 
algorithms 

XGBoost parallelized general purpose 
gradient boosting library 

narrowed approach 

MatLab, GNU Octave scientific libraries math oriented 
 
One of the most used data mining concept and methodology [8] is CRISP-DM (Cross-
Industry Process for Data Mining), which consists of six steps: Business Understand-
ing, Data Understanding, Data Preparation, Modeling, Evaluation and Deployment. 
The Data Preparation step consists of sub-steps: Data Transformation, Exploratory Data 
Analysis (EDA) and Feature Engineering. The group of the first five steps are also 
called the development phase. The deployment step is also called the production phase.  

Although the main interest upon DM/ML is broadly paid to the Modeling step and 
algorithms, one important point remains the fact that ML algorithms learn from data. 
Therefore, in practice, Data Understanding and Data Preparation can consume up to 
80% of the entire time of every DM using ML techniques project. Data Preparation is 
also slangy labeled Data Munging or Data Wrangling, which refer to strenuous work. 
Certain problem-solving techniques e.g. Forward Selection, Backward Eliminations in 
the Feature Engineering sub-step or grid-search in the Modeling step can lead to com-
putational intensive tasks especially when ML input data is large-scale or big. HPC 
(high-performance computing) cluster can be utilized for concurrent training of models 
in order to shorten the development time.  

In the following parts, some practical notes around data processing and DM process 
using ML techniques for commercial and research applications with IISAS participa-
tion in recent years are presented.  

Malicious behavior detection in mobile devices log domain. When everyone owns 
and uses mobile devices such as smartphones and/or tablets, the demand of cybersecu-
rity and situational awareness is pushing towards. This involved work was a part of the 
six-month pilot research done for IBM Slovakia. The interest was if it is possible to 
detect malicious behaviors of mobile devices based on collected logs of mobile devices. 
Raw data - logs from mobile devices belongs to human-generated data class, which are 
not so “Big” as machine-generated data. Data mining using ML techniques in this do-
main involved through following obstacles:  

• Collected raw logs are extremely noisy for the specific detection purpose. The logs 
contain a lot of information about continuous monitoring processes such us timing 
(clocks, alarms, calendars), positions, accelerators, display setting and adapting, net-
work and power monitoring, scanning processes, etc. 
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• Low occurrences of malicious behaviors - malware related activities, which caused 
imbalanced classes of data used for supervised ML; 

• Feature extraction for data with evolving characteristics i.e. number of applications 
on mobile devices is changed based on users’ demands without any limitations;  

• Privacy preserving data mining of personal sensitive information.  
• DM process required thorough Data Understanding in collaboration with domain 

experts, Data Preparation (especially EDA) and Feature Engineering. ML technique 
applied in this case was simple supervised binary classification with incremental 
learning. The obtained results were highly satisfied to distinguish malicious behavior 
from the normal one. 

Click-through-rate advertising: raw and ML data are really big in both development 
and production phases. Applied analyzing techniques are e.g. reservoir (sub)sampling, 
biases monitoring, smoothing, sliding windows with settable size, forgetting mecha-
nism, etc. came with adaptive online learning (retraining in combination with incre-
mental adaptation). ML data is highly imbalanced as usually in many commercial cases 
that implies boosting one class against the second by reducing number of negative ex-
amples. Feature selections and feature combinations are also utilized to improve mod-
els’ performance. The production infrastructure is high-performance Hadoop cluster of 
the Magnetic Media Online, Inc. technology company (USA). 

Power utility for functional awareness of monitoring stations: raw input data in this 
case is quite interesting, it is not “Big” in any one of 3Vs, but contains pure numerical 
and structured data collected from monitoring stations during several years. Such data 
can be called large-scale, which causes computational intensive tasks with memory 
consumption in the development phase. The question was if it is possible to realize the 
production on single machine with limited memory due to cost and energy efficiency. 
The solution can be any of traditional in-memory approach in a machine with larger 
memory, incremental learning or distributed learning with Spark installation in single 
machine for the production. However, the use of the incremental learning to overcome 
machine memory limitation can be the less painful way on both phases. 

3 Machine learning and many-core accelerators 

In the recent years the accelerators have been successfully used (not only) in machine 
learning and deep learning applications [4]. Manufacturers often offer the possibility to 
enhance hardware configuration with many-core accelerators to improve machine/clus-
ter performance. If we look at the list of top 500 most powerful supercomputers, we 
can see the increasing trend in both number of systems that employ the accelerators and 
their performance share. Most popular models of accelerators are based on MIC (Many 
Integrated Cores) and GPU (Graphics Processing Unit) architectures. The accelerators 
are able to offer significant performance increase for many application domains e.g.  
the work [5] realized in collaboration between TUKE (Technical University of Košice) 
and IISAS (Institute of Informatics, Slovak Academy of Science). The main feature of 
the many-core accelerators is massively parallel architecture (e.g. new NVIDIA P100 
accelerator contains 3840 CUDA cores), allowing them to speed up computations that 



245 Work-in-progress paper 
 

involve matrix-based operations, which is a heart of many ML implementations. Many 
popular ML frameworks and libraries already offer the possibility to use GPU acceler-
ators to speed up learning process with supported interfaces in various languages e.g.: 

Tab 2. Popular ML frameworks and libraries 

Library  
(impl. language) 

Main purposes 

Theano (Python) math expression compiler 
Tensorflow  

(C++, Python) 
numerical computation library by data flow graphs 

Keras (Python) minimalist, highly modular neural networks library capable 
of running on top of TensorFlow or Theano 

Caffe (C/C++, 
Python, MatLab, 

CLI) 

deep learning framework for image processing 

CNTK  
(C++, CLI) 

unified deep-learning toolkit that implements CNN and 
RNN training for speech, image and text data 

DL4J  
(Java, Scala) 

distributed deep-learning library written for Java and Scala, 
integrated with Hadoop and Spark 

Neon (Python) Nervana’s Python-based deep learning library 
Torch (C/LuaJIT) NN and optimization libraries that puts GPUs first 

MatConvNet Convolutional Neural Networks (CNNs) for MatLab 
 
Some of them also allow to use optimized CUDA Deep Neural Network (cuDNN) li-
brary to improve the performance even further. Similar to the ML libraries mentioned 
in Section 2, ML libraries with GPU support are also diverted in various implementa-
tion levels for various specific purposes such as image, voice and text processing. 

The demand for even more powerful hardware for deep learning applications caused 
that main manufacturer of GPU accelerators NVIDIA made considerable investments 
to the development of the new architecture called Pascal and special purpose system 
DGX-1 optimized for many-layered DNN. Among the new features most notable are 
the „half-precision”, which allows to reach 21.2 Teraflops and 160 GB/s bidirectional 
interconnect that significantly improves the scalability in multi-GPU systems. 

The matrix-based operations on Apache Spark can be computationally accelerated 
under same logic like GPU/CUDA acceleration. Here is a similar logic between Apache 
Spark vs. GPU processing (not only) from ML viewpoint: 

• If data fits into memory of one machine, GPU is faster, otherwise Spark; 
• Spark logic is similar to CUDA host logic in the mean of SIMD processing; 
• Spark network overhead vs. PCI-express transfer overhead; 
• MapPartitions is like kernel launch, partitions are like CUDA blocks; 
• Model parallelism vs. data parallelism: Data parallelism presents single instruction 

to multiple data items, ideal workload for a SIMD computer architecture; Model 
parallelism gives every processor the same data but applies a different model to it; 
Hybrid approach presents combination of data and model parallelism. 
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Potential benefits1, 2 of using GPUs to further accelerate Spark performance is also done 
with positive results. 

4 Conclusions 

This paper presents a few considerations about working and mining in large-scale data 
using ML techniques in our department in recent years. We hope that such notes are 
useful for readers with nearby research interests and would like to thank to colleagues 
and reviewers for consultations and advices on the paper preparation. 
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Remarks: In addition to standard HPC computational power, SIVVP3 (Slovak Infra-
structure for High Performance Computing) HPC clusters are also enhanced by GPU 
accelerators NVIDIA  M2050/M2070 (448 CUDA cores) and K20 (2496 CUDA cores) 
to allow researchers from Slovakia to use GPU accelerated systems for research pur-
poses. The installed GPU capacity is as follows: Institute of Informatics SAS, Brati-
slava: 16x K20 + 2x M2070; Matej Bel University, Banská Bystrica: 6x K20 + 2x 
M2070; Technical University of Košice: 2x K20 + 2x M2070; Institute of Experimental 
Physics, Košice: 10x K20 + 32x M2070; University of Žilina: 2x M2070; Slovak Uni-
versity of Technology in Bratislava: 8x M2050. 
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