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Abstract—A large amount of unstructured data is pro-
duced daily through numerous media around us. Despite
that computer systems are becoming more powerful, even the
commodity hardware, processing of such data and gaining
useful information in time efficient manner remains a problem.
One of the domains in unstructured data processing is Natural
Language Processing (NLP). NLP covers areas like information
extraction, machine translation, word sense disambiguation,
automated question answering, etc. All of these areas require
fast and precise Named Entity Recognition (NER), which is
not a trivial task because of the processed data size and
heterogeneity. Our effort in this research area is to provide fast
tokenization and precise NER with linear complexity. In this
paper, we present a character gazetteer with linear tokenization
as well as NER and compare its two tree data structure
representations; i.e. multiway tree implemented by hash maps
and first child-next sibling binary tree. Our measurements
shows that one outperforms the other in processing time, while
the other outperforms it in memory consumption efficiency.

Keywords-gazetteer; named entity recognition; natural lan-
guage processing; text processing; tokenization;

I. INTRODUCTION

Natural Language Processing (NLP) is a very important
and interesting area in computer science affecting also
other spheres of science, for instance molecular biology. A
large amount of textual data is continuously produced in
numerous media around us and therefore there is a need
of processing it in order to gain required information. One
of the most important processing steps in NLP is Named
Entity Recognition (NER). The task of NER is to recognize
occurrence of known entities in input texts usually coming
from websites, web portals, social media, data dumps and
documents. Known entities might be of arbitrary type,
but the most used types in NER are names of persons,
organizations, locations, times, and quantities. One of the
commonly used NER techniques is gazetteer – a simple list
of known entities, which are looked up in the input text. We
use the term gazetteer interchangeably also with the term
named entity dataset. There are various sources of named
entities available; e.g. Google Data Dumps1 of FreeBase2,

1https://developers.google.com/freebase/data
2http://www.freebase.com/

DBpedia3, so it is not a problem to build up gazetteer
lists for miscellaneous domains. In general, gazetteers do
no depend on previously discovered tokens nor annotations.
They expect raw text on input and find matches based on
its content. According to the way of handling input text,
there are two main approaches that gazetteers follow to find
matches – token-based and character-based. Token-based
gazetteers split input text into a sequence of tokens on which
a matching is performed, while character-based gazetteers
process input text character by character. The approach
of input handling determines internal representation of the
gazetteer list. Token-based gazetteers use hash maps and/or
token trees, while character-based gazetteers use character
trees, which behave like a finite-state machines (FSM).
Both approaches affect memory consumption and speed. We
present a summary of available existing gazetteers together
with description of their approaches in the following section.

II. RELATED WORK

Several gazetteer implementations are provided by Onto-
text4 in GATE [1]; i.e. Hash Gazetteer – gazetteer based on
hash tables instead of FSM. Authors declare that it takes in
average four times less memory and that it works three times
faster than an optimized FSM implementation; Stand-Alone
Gazetteer – version of the Hash Gazetteer that can be used
without GATE as a Java library with minimal efforts in any
application that needs to look-up huge lists of strings in text
in a time and memory efficient manner.; Large Knowledge
Base Gazetteer5 – new-generation gazetteer, which provides
support for ontology-aware NLP. It allows using of large
gazetteer lists and speeds up subsequent loading of data by
caching.; Linked Data Gazetteer – an experimental gazetteer
that uses Linked Open Data for lookups.

Besides Ontotext gazetteers, there is a number of scientific
works dealing with NER using comparable approaches.
Authors in [2] present a gazetteer implemented as an FSM.
Gazetteer is built at initialization time starting from the list of
phrases that need to be later recognized with contextual de-
pendency. Contextual dependency is also one of the assump-

3http://dbpedia.org/
4http://www.ontotext.com/collaborations/gate
5http://gate.ac.uk/sale/tao/splitch13.html#sec:gazetteers:lkb-gazetteer



tions in [3]. In the work [4], authors deal with automated
gazetteer construction as well as with various problems such
as entity-noun ambiguity, entity-entity ambiguity and entity
boundary detection. A high-level rule-based language for
building and customizing NER annotators is described in [5].
Unfortunately, the process of designing the rules themselves
is manual and time-consuming, but the rule-based approach
performance is comparable to that of machine learning.
Pattern-based matching and validation in an unlabeled cor-
pus is described in [6] and [7] respectively. The outcome
is that patterns can be quite complex to fulfill different
requirements. An evaluation of six different NER tools over
microposts is provided in [8]. Some of the evaluated tools
rely on gazetteers when detecting named entities. Other tools
use word-based tokenization and chunking together with
local text features to detect named entities with a help of
machine learning techniques.

In general, tokenization is rarely performed outside
gazetteer. It is because of its purpose to only find entities and
not to deal with disambiguation. There are two main ways of
tokenization distinguished in gazetteers; i.e. token-level and
character-level tokenization. Gazetteers with token-level tok-
enization (from here on referenced as token gazetteers) faces
several problems such as the need of multi-travel search and
matching, finding word boundaries, chunking or processing
of non-trivial strings and characters. These problems lead
to longer running time and low processing performance of
this kind of gazetteers. Therefore, in this paper, we deal
with gazetteer based on character-level tokenization (from
here on referenced as character gazetteer) and present an
approach, which provides more precise results and much
better performance than token-level equivalent. Our first
idea of character gazetteer came from exercise terms in the
Information Retrieval course at FIIT STU6, but unfortunately
the first implementation contained impurities that made the
code unusable. The implementation presented in this paper
has been restructured and improved for right functionality,
better performance and more effective memory use.

III. GAZETTEER TREE DATA STRUCTURE

Entity datasets as the main source of gazetteer lists are
usually large and have tendency to grow (adding new known
entities). This fact significantly affects memory require-
ments, running time as well as the tokenization complexity,
especially for token gazetteers. Therefore a new gazetteer
data structure is required to fold entities at character level,
which also enables fast linear tokenization of input text
and produces required output such as references, occurrence
quantity and positions in the input text. Tree structure is
a powerful way of organizing data hierarchically and suits
these considerations very well. Moreover, it provides easy
and quick access operations in order to find elements and

6http://vi.ikt.ui.sav.sk/User:adamec?view=home
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Figure 1. Two different representations of the same character gazetteer
tree: (left) multiway tree and (right) first child-next sibling binary tree

traverse through the structure. Therefore we have chosen tree
data structure to represent one-to-many parent-child relations
of characters in character gazetteer.

We have considered two representations of the tree data
structure; i.e. multiway tree and first child-next sibling binary
tree. Multiway tree (from here on referenced as HMT – a
hash map tree) was implemented by Java HashMap, which
provides constant-time performance (O(1) in average) for
the basic operations (get and put). Each node of the tree had
a hash map in which it could have arbitrary number of child
nodes as its values; i.e. following characters. Hash maps
were created with the default initial capacity (16) and the
default load factor (0.75). The first child-next sibling binary
tree (from here on referenced as CST – child-sibling tree)
is a binary representation of the multiway tree, where each
node refers only to its first child node and its next sibling
node. This representation is not as fast as the HMT, but is
more efficient in memory consumption. It is also expected
that gazetteer trees would grow slower with the number of
inserted entities because of human language limitation.

A simple example of the character gazetteer tree in both
representations is depicted in Figure 1. Seven different
entities are split into characters and arranged in the tree; i.e.
magnetic, magnet, magma, man, car, cab and crane. Gray
color indicates last characters of the entities and the black
node is the root of the tree. The tree structure enables fast
and straightforward search for all the possible entities in the
input text.

Both HMT and CST are filled with Algorithm 1. Filling
algorithm inserts provided entity into the gazetteer’s tree
so the gazetteer will be able to find it in the input text.
Algorithm expects on input a string representing the in-
serted entity. It loops over all its characters while traversing
and building the tree. Finally, a node representing the last



Algorithm 1 Insert entity into the character gazetteer tree
1: node← root node
2: for all character in entity do
3: if node has a child with character then
4: node← child
5: else
6: child← new node with character
7: add child to node
8: end if
9: end for

10: mark node as a matching node

character of the input string is marked as a matching node.
To support case-insensitivity, entities should be converted to
either lowercase or uppercase prior to insertion.

IV. LINEAR TOKENIZATION AND NAMED ENTITY
RECOGNITION

After a tree gazetteer is filled with entities, it is ready
to be used on tokenization and finding of known entities in
the input text. This process is performed by Algorithm 2.
Complexity of the algorithm is O(n), where n is a number
of characters in input text. It means, that we need to traverse
the input text nearly one time to obtain the results. This
algorithm is intended to be used on a stream of text of
unlimited size.

Initially, we wanted strictly one-way traverse of input
text, but the realization revealed that it is impossible to

Algorithm 2 Matching algorithm of the character gazetteer
1: buf ← empty
2: node← root node
3: while characters on input do
4: ch← next character from input
5: normalize whitespace or skip multiple
6: if node has a child node mapped on ch then
7: add ch to buf
8: node← child node mapped on ch
9: if node is marked as a matching node then

10: found an entity
11: end if
12: else
13: if buf contains character other than letter or digit

then
14: unread characters from buf back on input until

the first occurrence of the character that is not
letter or digit

15: end if
16: buf ← empty
17: node← root node
18: end if
19: end while

recognize all occurrences of NEs this way, especially the
overlapping ones; e.g. a tweet “I’m in museum of london”,
where two entities could be found: ORG/museum of london
and LOC/london. Therefore an “unread” part on lines 12-14
was required to perform “rewind” of the input stream at the
position of possible start of overlapping named entity. The
tokenization complexity was increased but not too much,
because entities are usually short.

Case-insensitivity can be handled easily in the main loop
of the matching algorithm. It is just required to convert the
read character into lower-case or upper-case. It depends on
the form chosen in the filling algorithm. Matching algorithm
also deals with different whitespace characters, which are
normalized to standard space (0x20). In addition, subsequent
whitespace characters are skipped and treated as a single
character. All of this is because of strict matching, which
could fail on word sequences separated by multiple or non-
standard whitespace characters.

V. EVALUATION

Implementations of the CST and HMT character
gazetteers were tested on memory consumption and pro-
cessing time. There were three FreeBase datasets and one
Wikipedia dataset used for the memory consumption testing;
i.e. Freebase organizations (778,814 unique entities), Free-
base locations (1,256,552 unique entities), Freebase persons
(2,614,401 unique entities) and Wikipedia titles and alterna-
tive names (9,319,611 unique entities). While the Freebase
datasets were obtained from Google Data Dumps, we have
built Wikipedia dataset from XML dump file by extracting
article titles and their alternative names. Wikipedia dataset
was the largest one that we have used for the testing.

Figure 2 depicts measured values in the memory con-
sumption tests of CST and HMT gazetteers. Both gazetteers
were filled with the same data and compared. Measurements
showed that CST required about 75% less memory than
HMT. Also the bootstrap of the CST gazetteer was about
20% faster.

The ratio of characters stored per single tree node is
depicted in Figure 3. We can see that the tree has a tendency
to grow slower with the number of inserted entities as there
can be proportionally more characters stored per one node.
The weakness of the character gazetteer is in its memory
consumption, especially for the HMT implementation, where
each parent node requires to allocate memory for its hash
map. Theoretically, each tree node can have so many child
nodes as is the number of characters in the charset set, thus
the tree structure can be very wide. For instance Unicode
standard. Unicode code points are divided into 17 planes
each of 65,536 (216) code points (characters). In version
6.1, six of these planes have assigned code points and are
named. About ten percent of the potential space of Unicode
is used at the moment. More concretely, Unicode can have
1,111,998 characters (= 17 planes × 65,536 characters/plane
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Figure 2. Memory consumption of character gazetteer tree according to
different tree representation and fill data

− 2048 surrogates − 66 non-characters) but currently just
109,384 (≈ 217) code points are actually assigned. Then
maximum number of nodes in the gazetteer tree can be less
than

∑n
i=1 2

17i where n is the longest length of entities.
Fortunately, the tree space is limited by human language and
all combinations will never be covered, thus the management
of the gazetteer tree in machine memory is possible also on
a commodity hardware.

Processing time was measured by executing both gazetteer
implementations over a set of 9,909 documents acquired
from CoNLL-2003 datasets [9] with approximately 29 MB
of text. Tested gazetteers were filled with the Freebase
persons dataset. The test was repeated five times, while
in each of the runs, there were four measures taken after
each 7 MB of processed text. Repeated measures were were
averaged and the results are depicted in Figure 4. We can
see that HMT gazetteer has significantly outperformed the
CST variant, which required more time on traversing its tree
structure.

We have made some processing time tests also in [10],
where we compared character gazetteer with Ontotext
HashGazetteer and our implementation of token gazetteer
through red-black tree. One of the tests was performed over
a set of 1,390 documents from the CoNLL-2003 dataset.
Gazetteers were filled with Freebase persons entities and
executed. The result was that our character gazetteer slightly
outperformed Ontotext HashGazetter, but its drawback was
in 3.5 times larger memory requirements.

An example of the character gazetteer matching is de-
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Figure 3. Average number of characters stored per single node in the
character gazetteer tree

picted in Figure 5. There is a screenshot of a simple testing
tool with an input text taken from Wikipedia on the left
and a list of matched entities on the right together with
their frequencies. Matched entities are highlighted in the
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Figure 4. Processing times of Freebase persons filled CST and HMT
gazetteers on a set of CoNLL-2003 documents



Figure 5. Highlighted positions of matched NEs in the sample input text

input text. character gazetteer provides linear complexity
matching solution with fine-grained feature and fast entity
recognition with precise results. Entities can contain various
special characters; e.g. quotation marks, dash, dot, amper-
sand, copyright sign. They can have also overlapping parts
or have similar features; e.g. noun, adjective, with postfix
and prefix.

VI. CONCLUSION

We have presented a linear matching algorithm for char-
acter gazetteer and compared two tree data structures of
the gazetteer. In comparison to HMT structure, CST struc-
ture benefits from memory saving, but it slows down the
matching algorithm as there are more operations required
for the basic tree operations. We would like to continue
in improving the three data structure in order to decrease
its memory requirements and make it more efficient for
traversing. One possible direction of improvement could be
in collapsing of nodes. Presented implementations of the
character gazetteer are available for download7.
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