
Combining Named Entity Recognition Methods for
Concept Extraction in Microposts

Štefan Dlugolinský
upsysdlu@savba.sk

Peter Krammer
upsypkra@savba.sk

Marek Ciglan
upsymaci@savba.sk

Michal Laclavík
laclavik.ui@savba.sk

Ladislav Hluchý
upsylhlu@savba.sk

Institute of Informatics, Slovak Academy of Sciences
Dúbravská cesta 9

845 07 Bratislava, Slovakia

ABSTRACT
NER in microposts is a key and challenging task of mining
semantics from social media. Our evaluation of a number of
popular NE recognizers over a micropost dataset has shown
a significant drop-off in results quality. Current state-of-the-
art NER methods perform much better on formal text than
on microposts. However, the experiment provided us with
an interesting observation – although individual NER tools
did not perform very well on micropost data, we have re-
ceived recall over 90% when we merged all the results of the
examined tools. This means that if we would be able to com-
bine different NE recognizers in a meaningful way, we might
be able to get NER in microposts of an acceptable quality.
In this paper, we propose a method for NER in microposts,
which is designed to combine annotations yielded by exist-
ing NER tools in order to produce more precise results than
input tools alone. We combine NE recognizers utilizing ML
techniques, namely decision tree and random forest using
the C4.5 algorithm. The main advantage of the proposed
method lies in the possibility of combining arbitrary NER
methods and in its application on short, informal texts. The
evaluation on a standard dataset shows that the proposed
approach outperforms underlying NER methods as well as
a baseline recognizer, which is a simple combination of the
best underlying recognizers for each target NE class. To the
best of our knowledge, up-to-date, the proposed approach
achieves the highest F1 score on the #MSM2013 dataset.

Categories and Subject Descriptors
1.2.7 [Natural language processing]: Language parsing
and understanding, Text analysis.

Keywords
named entity recognition, machine learning, microposts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
A significant growth of social media interaction can be ob-

served in recent years. People are able to interact through
the Internet from almost anywhere at anytime. They can
share their experience, thoughts and knowledge instantly
and they do it in mass dimensions. The easiest and probably
the most popular way of interaction on the Web is through
microposts – short text messages posted on the Web. There
is a plenty of services offering such communication, notorious
examples of microposts include tweets, Facebook statuses,
comments, Google+ posts, Instagram photos. Microposts
analysis has a big potential in hidden knowledge that can
be used in wide range of domains like emergency response,
public opinion assessment, business or political sentiment
analysis and many more. The most important task in or-
der to analyze and make sense of microposts is the Named
Entity Recognition (NER). NER in microposts is a challeng-
ing problem because of a limited size of a single micropost,
prevalence of term ambiguity, noisy content, multilingual-
ism [2]. These are the main reasons why existing NER
methods perform better on formal newswire text than on
microposts and there is clearly a space for new methods of
NER designed for social media streams.

In this paper, we first evaluate multiple popular and
widely used NER methods on the micropost data. The re-
sults show a significant decrease of result quality compared
to those reported for newswire texts. An interesting obser-
vation from the experiment is that we can achieve recall over
90% on the micropost data, when all the results are unified.
This means, that in theory, we could achieve very high qual-
ity annotations of named entities (NEs) in microposts just
by combining existing NER tools in a “smart” way. The
rest of the paper is dedicated to the research question, how
to combine annotations of different NER tools in order to
achieve better recognition in microposts.

We propose an approach for combining NER methods
represented by different NE recognizers in order to make
a new NE recognizer intended to be used on microposts.
The method is designed to combine annotations produced
by different NER tools by exploiting machine learning (ML)
techniques. We use the term annotation to refer to a sub-
string of an input text that has been marked by a NER tool
as a reference to an entity of one of target classes; i.e., LOC,
MISC, ORG and PER. The main challenge is the transfor-
mation of text annotations produced by NER tools into a

Copyright c© 2014 held by author(s)/owner(s); copying permitted
only for private and academic purposes.
Published as part of the #Microposts2014 Workshop proceedings,
available online as CEUR Vol-1141 (http://ceur-ws.org/Vol-1141)

#Microposts2014, April 7th, 2014, Seoul, Korea.

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014

http://ceur-ws.org/Vol-1141
http://ceur-ws.org/Vol-1141

form usable for training ML classification algorithms. Once
the NER annotations were transformed to an appropriate
format, we have performed an evaluation of a number of
popular ML classification techniques. The best performing
on our problem domain was the C4.5 algorithm [15] that
was used to train decision tree (DT) and random forest (RF)
models. The resulting classification model outperformed the
best of underlying individual recognizers by more than 10%
in F1 score and a chosen baseline model by 3% in F1 score.

The main contributions of the work are following: (i) We
show that although existing NER tools designed for news
text do not perform well on microposts, by merging results
of several different NER tools, we can achieve high recall and
precision. (ii) We utilize ML classifiers to combine the out-
puts of multiple NE recognizers. The principal challenge is
the transformation of text annotations yielded by NER tools
to feature vectors that can be used for the training of classi-
fication algorithms. (iii) We provide an extensive evaluation
of popular classification models to asses their suitability for
the problem of combing results of NER tools. For the best
performing ones, we have studied the influence of algorithms
parameters on the classification results.

The paper is structured as follows. In Section 2, we briefly
summarize research works related to NER. In Section 3 we
conduct an experiment, in which a number of existing pop-
ular NER tools are evaluated on microposts data. Results
show dramatic drop in quality measures compared to the
numbers reported on news datasets. In Section 4, we define
a baseline NE recognizer, explain our approach of combining
NER tools and evaluate our NE recognition models. Finally,
Section 5 discusses open issues and Section 6 summarizes our
results and concludes the paper.

2. RELATED WORK
There has been a large amount of NER research conducted

on formal text, such as newswire or biomedical text. The
performance of NE recognizers for this kind of text is compa-
rable to that of humans. For instance, the MUC-7 NE task,
where the best NE recognizer scored F1 = 93.39%, while the
annotators scored F1 = 97.60% and F1 = 96.95% [13]. An-
other example is CoNLL-2003 shared task, where the best
NER recognizer scored F1 = 88.76% in English test [22].
It has been later outperformed by Ratinov and Roth [17]
achieving F1 = 90.8%. NE recognizers, which have been
designed for these tasks and which achieve state-of-the-art
performance results, heavily rely on linguistic features ob-
servable in formal text. But many of the important fea-
tures absent in microposts; e.g. capitalization. Therefore,
news-trained recognizers perform worse on them. The per-
formance drop-off is also caused by nature of microposts
content – its length, informality, noise and multilingualism.
Many of the problems related to NER in microposts are dis-
cussed by Bontcheva and Rout in [2].

The idea of combining different methods for NER is not
new. It has been successfully applied on formal text by Flo-
rian et al. [8], who combine four diverse classifying methods;
i.e., transformation-based learning, hidden Markov model,
robust risk minimization (RRM) and maximum entropy.
Classifiers are complemented by gazetteers together with
the output of two externally trained NE recognizers and the
whole is used to extract text features. The RMM method is
used in order to select a good performing combination of the
features. Todorovski and Džeroski [23] introduce meta de-

cision trees (MDT) for combining multiple classifiers. They
present a C4.5 algorithm-based training algorithm for pro-
ducing MDTs. Another application is by Si et al. [21], who
combine several NER methods for bio-entity recognition in
biomedical texts. They experiment with combining NE clas-
sifiers by three different approaches; i.e., majority vote, un-
structured exponential model and conditional random field.
Also Saha and Ekbal [20] use seven diverse NER classifiers
to build a number of voting models depending upon identi-
fied text features that are selected mostly without a domain
knowledge.

Regarding the NER for tweets, there is also a similar ap-
proach taken by Liu et al. [12]. Authors combine a k-Nearest
Neighbors (k-NN) classifier with a linear Conditional Ran-
dom Fields (CRF) model under a semi-supervised learning
framework and show increase in F1 with respect to a base-
line system, which is its modified version without k-NN and
semi-supervised learning. Etter et al. [6] deal with mul-
tilingual NER for short informal text. They do not rely
on language dependent features such as dictionaries or POS
tagging, but they use language independent features derived
from the character composition of a word and its context in a
message; i.e., words, character n-grams for words, ±k words
to the left, message length, word length and word position in
message. They use an algorithm that combines Support Vec-
tor Machine (SVM) with a Hidden Markov Model (HMM)
to train a NER model on a manually annotated data. The
experiments show that the language independent features
lead to F1 score increase and the model outperforms Ritter
et al. [19]. Ritter et al. [19] present re-built NLP pipeline for
tweets; i.e., POS tagger, chunker and NE recognizer. The
NE recognizer leverages the redundancy inherent in tweets
using Labeled LDA [16] to exploit Freebase1 dictionaries as
a source of distant supervision. TwiNER, a novel unsuper-
vised NER system for targeted tweet streams is proposed
by Li et al. [11]. Similarly to Etter et al. [6], TwiNER does
not rely on any linguistic features of the text. It aggregates
information garnered from the Web and Wikipedia. The
advantage of TwiNER is that it does not require manually
annotated training set. On the other hand, TwiNER does
not categorize the type of discovered NEs. Authors prefer
the problem of correctly locating and recognizing presence
of NEs instead of their classification. Habib and Keulen [9],
the winning solution of the #MSM2013 IE Challenge, splits
the NER problem in named entity extraction (NEE) and
named entity classification (NEC), too. The NEE task is
performed by union of entities recognized by two models;
i.e., CRF and SVM. Both models are trained on manually
labeled tweet data. The CRF involves POS tags and capital-
ization of the words as features. The SVM segments tweet
using Li et al. [11] approach and enriches the segments by
external knowledge base (KB). It uses the same features as
the SVM model and information from external KB.

3. COMBINED NER METHODS
We have used state-of-the-art NER methods represented

by various existing NE recognizers. These methods were
combined in our classification models discussed later in this
paper. Below we briefly describe used NE recognizers focus-
ing on their NER methods.

1) ANNIE (v7.1) [4] relies on finite state algorithms,

1http://www.freebase.com

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 35

Illinois Wikifier LingPipe Stanford NERWikipedia Miner

Wikipedia SVM CRFHMM

Open Calais ANNIE Apache OpenNLPIllinois NET

Gazetteers
Perceptron
Learning

Finite state
algorithms

Linked Data
Maximum
entropyMachine learning

Figure 1: Outline of NE recognizers

gazetteers and the JAPE (Java Annotation Patterns Engine)
language. 2) Apache OpenNLP2 (v1.5.2) is based on max-
imum entropy models and perceptron learning algorithm.
3) Illinois Named Entity Tagger (v1.0.4) [17] uses a regu-
larized averaged perceptron with external knowledge (unla-
beled text, gazetteers built from Wikipedia and word class
models). We have used Illinois NET with 4-label type set
and default configuration. 4) Illinois Wikifier (v1.03) [18]
is based on a Ranking SVM and exploits Wikipedia link
structure in disambiguation. 5) Open Calais operates be-
hind a shroud of mystery since there is not much informa-
tion available about how its NE recognition works. Offi-
cial sources4 say, that it uses NLP, ML and other meth-
ods as well as Linked Data. 6) Stanford Named Entity
Recognizer (v1.2.7) [7] is based on CRF sequence models.
We have used the English 4-class caseless CONLL model5.
7) Wikipedia Miner6 [14] is a text annotation tool, which is
capable of annotating Wikipedia topics in a given text. It
exploits Wikipedia link graph, Wikipedia category hierarchy
and relies on ML classifiers, which are used for measuring
relatedness of concepts and terms, as well as for measuring
disambiguation. We have applied this software to discover
Wikipedia topics, which were then tagged according to the
DBPedia Ontology7.

Most of the NE recognizers are based on statistical learn-
ing methods. Some of them use also gazetteers and other
external knowledge like Wikipedia or Linked Data. Outline
of the NE recognizers is depicted in Figure 1.

3.1 NE Recognizers Evaluation
In this section, we evaluate NER methods described in

Section 3 on a micropost data corpus. Our intent was to
see the performance of each individual NE recognizer. The
evaluation was focused also on analysis, which NE recog-
nizer is more suitable for particular named entity class and
whether NE recognizers produce diverse results. NE recog-
nizers were evaluated over the adapted #MSM2013 IE Chal-
lenge training dataset [1]. We have taken the 1.5 version and
cleaned it from duplicate as well as from overlapping micro-
posts with the test dataset. The cleaned training dataset

2http://opennlp.apache.org
3http://cogcomp.cs.illinois.edu/page/download_
view/Wikifier
4http://www.opencalais.com/about
5english.conll.4class.caseless.distsim.crf.ser.gz
6http://wikipedia-miner.cms.waikato.ac.nz
7http://dbpedia.org/Ontology

LOC - 606 (19.44%)

MISC - 215 (6.9%)

ORG - 601 (19.28%)

PER - 1696 (54.39%)

LOC - 96 (6.35%)

MISC - 94 (6.22%)

ORG - 232 (15.35%)

PER - 1089 (72.07%)

Figure 2: Named entity occurrences in train (left)
and test (right) datasets

finally contained 2752 unique manually annotated microp-
osts with classification restricted to four entity types: PER,
LOC, ORG and MISC. We have also adapted a test dataset
from the #MSM2013 IE Challenge on which we later eval-
uated our classification models. The occurrence of NEs in
both datasets is displayed in Figure 2. Named entity types
were not equally distributed. The most frequent entity type
in both datasets was PER and the least frequent was MISC.
Datasets used in this paper are also available for download8

in GATE SerialDataStore format. Datasets includes results
of all the used NE recognizers as well as our NER models
discussed later in the paper.

Evaluated NE recognizers were not specially configured,
tweaked or trained for microposts prior to the evaluation.
We wanted to see, how they cope with the different kind
of text that they were trained for. The alignment with our
taxonomy was done by simple mapping. Evaluation results
are displayed in Table 1 and ordered by Micro avg. F1 score.
We provide also a Macro summary which averages P , R and
F1 measures on a per document basis, while the Micro sum-
mary considers the whole dataset as a one document. The
evaluation has also shown, that the NE recognizers produced
diverse annotations. This behavior could be seen in raised
recall after the results were unified and cleaned from du-
plicates. Figure 3 illustrates the situation and the possible
recall, which could be theoretically achieved when combin-
ing the recognizers.

More details about the evaluation can be found in [5].
Some of the evaluation results may slightly differ from those
displayed in Table 1. It is because we did accept adjectivals
and demonymic forms for countries as MISC type in this
work; e.g., Americans, English.

4. COMBINING NE RECOGNIZERS
The idea of how to combine NE recognizers was to use

ML techniques to build a classification model, which would

8http://ikt.ui.sav.sk/microposts/

LOC MISC ORG PER Macro avg. Micro avg.

Precision Recall F1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
24

0.
92

0.
38

0.
06

0.
72

0.
11

0.
08

0.
82

0.
15

0.
31

0.
96

0.
47

0.
17

0.
86

0.
28

0.
17

0.
91

0.
29

Figure 3: Precision, Recall and F1 of unified NE
recognizers

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 36

Table 1: Evaluation of NE recognizers over the
training dataset

F1 Macro avg. Micro avg.

NE recognizer LOC MISC ORG PER P R F1 P R F1

OpenCalais 0.74 0.26 0.56 0.69 0.66 0.50 0.56 0.72 0.60 0.65
Illinois NET 0.72 0.14 0.36 0.79 0.50 0.51 0.50 0.61 0.65 0.63
Stanford NER 0.67 0.11 0.29 0.75 0.46 0.45 0.46 0.60 0.59 0.60
ANNIE 0.68 – 0.36 0.61 0.71 0.37 0.41 0.64 0.48 0.55
Illinois Wikifier 0.55 0.16 0.51 0.62 0.54 0.42 0.46 0.62 0.47 0.54
Apache OpenNLP 0.51 – 0.27 0.58 0.68 0.28 0.34 0.62 0.38 0.47
Wikipedia Miner 0.56 0.06 0.33 0.61 0.34 0.52 0.39 0.32 0.57 0.41
LingPipe 0.35 – 0.07 0.35 0.40 0.30 0.19 0.16 0.38 0.23
Miscinator – 0.46 – – 0.92 0.09 0.12 0.69 0.03 0.05

be trained on features describing microposts’ text as well
as annotations produced by involved NE recognizers. We
have used the training dataset for building the model and
the test dataset for evaluating it and comparing with other
NE recognizers (Section 3.1).

According to the evaluation results in Section 3.1, we
have chosen seven out of eight NE recognizers based on dif-
ferent methods. The discarded one was LingPipe because
of its weak9 performance on micropost data. Chosen NE
recognizers were then complemented by Miscinator, an NE
recognizer specially designed for the #MSM2013 IE Chal-
lenge [24].

As overall recall of the underlying NE recognizers was rela-
tively high, we wanted to gain maximum precision while not
devalue the recall. We decided to involve ML techniques, but
it was necessary to transform this problem into a standard
ML task. In this case it was suitable to transform the task
of NER into a task of classification. The intent was that
ML process would produce a classification model capable
of classifying given annotations from involved methods into
four target classes LOC, MISC, ORG, PER and one special
class NULL indicating that the annotation did not belong
to any of the four target classes. Then a simple algorithm
would be applied to merge the re-classified annotations into
final results.

4.1 Baseline NE Recognizer
We have defined a baseline NE recognizer in the way that

each target entity class was extracted by the best NE rec-
ognizer according to the evaluation made over the training
dataset (section 3.1); i.e., LOC, MISC and ORG classes were
extracted by OpenCalais and PER class was extracted by
Illinois NET. The performance of the baseline can be seen
in Table 2 together with performances of the NE recogniz-
ers considered for combining. The evaluation has been made
over the test dataset. We can see that the baseline NE rec-
ognizer had outperformed underlying NE recognizers in pre-
cision and F1 measure, which was expected. Our goal was
to overcome the performance of the baseline NE recognizer
with a model produced by ML approach.

4.2 Transforming NEs into Feature Vectors
We have taken an approach of describing how particular

methods performed on different entity types compared to
the response of other methods and a manual annotation.
Used as a training vector, this description was an input for
training a classification model. A vector of input training
features was generated for each annotation found by un-
derlying NER methods restricted to following types: LOC,

9we have used the English News: MUC-6 model

MISC, ORG, PER, NP – noun phrase, VP – verb phrase,
OTHER – different type. We called this annotation a ref-
erence annotation. The vector of each reference annotation
consisted of several sub-vectors (Figure 4).

annotation
vector

tweet
vector

method1
vector

method2
vector

methodN
vector… correct

answer
preproc.
vector

training
vector

Figure 4: Training vector

The first sub-vector of the training vector was an annota-
tion vector (Figure 5). The annotation vector described the
reference annotation – whether it was upper or lower case,
used a capital first letter or capitalized all of its words, the
word count, and the type of the detected annotation.

annotation
vector

annotation
type

first letter
capital

all letters
upper cased

all letters
lower cased

capitalized
words word count

Figure 5: Annotation vector

The second sub-vector described microposts as a whole
(Figure 6). It contained features describing whether all
words longer than four characters were capitalized, upper-
case, or lowercase. We called this sub-vector tweet vector.

tweet vector

all words*
capitalized

all words*
upper cased

all words*
lower cased

* words longer than four characters

preproc.
vector

ail aiia aiir

Figure 6: Tweet vector (left) and preprocessing vec-
tor (right)

The rest of the sub-vectors were computed according to
the overlap of the reference annotation with annotations pro-
duced by particular NER method. Such sub-vector (termed
a method vector by us) was computed for each method
and contained four other vectors describing the overlap of
method annotations with reference annotation on each tar-
get entity type (Figure 7). The annotation type attribute
was filled with a class of method annotation that exactly
matched position of the reference annotation and was one of
the target entity classes, otherwise it was left blank.

Each overlap vector of a particular method and NE class
(Figure 8) consisted of five components – ail: the average in-
tersection length of a reference annotation with the method

Table 2: Evaluation of NE recognizers over the test
dataset

F1 Macro avg. Micro avg.

Model LOC MISC ORG PER P R F1 P R F1

Baseline 0.61 0.29 0.30 0.84 0.69 0.44 0.51 0.83 0.67 0.74
Illinois NET 0.50 0.06 0.32 0.84 0.41 0.46 0.43 0.65 0.69 0.67
Stanford NER 0.51 0.00 0.30 0.82 0.39 0.43 0.41 0.67 0.67 0.67
Open Calais 0.61 0.29 0.30 0.69 0.64 0.41 0.47 0.66 0.60 0.63
ANNIE 0.48 – 0.19 0.68 0.61 0.32 0.34 0.63 0.52 0.57
Illinois Wikifier 0.34 0.09 0.46 0.68 0.44 0.38 0.39 0.63 0.50 0.55
Apache OpenNLP 0.38 – 0.13 0.64 0.57 0.27 0.29 0.62 0.43 0.51
Wikipedia Miner 0.29 0.04 0.29 0.67 0.28 0.46 0.32 0.32 0.57 0.41
LingPipe 0.15 – 0.05 0.38 0.37 0.28 0.14 0.15 0.38 0.21
Miscinator – 0.19 – – 0.88 0.03 0.05 0.52 0.01 0.01

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 37

method
vector

annotation
type

LOC overlap
vector

MISC overlap
vector

ORG overlap
vector

PER overlap
vector

Figure 7: Method vector

annotations of the same NE class, aiia: the average intersec-
tion ratio of the method annotations of the same NE class
with reference annotation, aiir: the average intersection ra-
tio of a reference annotation with method annotations of the
same NE class, average confidence (if the underlying method
return such value), and variance of the average confidence.

NE overlap
vector

ail aiia aiir avg.
confidence

confidence
variance

Figure 8: Overlap vector

The ail component in overlap vector was computed using
formula (1), where R was a fixed reference annotation and
MC was a set of n method annotations of class C intersecting
with the reference annotation R. The ail component was a
simple arithmetic mean of intersection lengths.

ail(R,MC) =
1

n

n∑

i=1

|R ∩MCi| (1)

The aiia component was computed using formula (2),
which was also a simple arithmetic mean, but the intersec-
tion lengths were normalized by lengths of particular method
annotations MCi intersecting with the reference annotation
R. We wanted the value of aiia component to describe how
much were method annotations covered by the reference an-
notation.

aiia(R,MC) =
1

n

n∑

i=1

|R ∩MCi|
|MCi|

(2)

Similarly, the aiir component was computed using formula
(3), but the intersection lengths were normalized by length
of the reference annotation R. The value of aiir component
was used to describe how much was the reference annotation
covered by method annotations.

aiir(R,MC) =
1

n

n∑

i=1

|R ∩MCi|
|R| (3)

A simple example of overlap vector computation is de-
picted in Figure 9. The overlap vector is computed for
method 4 and PER class according to the highlighted refer-
ence annotation. In this example, the reference annotation
is M2.PER1, but it can be any method annotation or man-
ual annotation. The rest of the method 4 overlap vectors
are zero-valued since method 4 does not return annotations
of types LOC, MISC and ORG. Similarly, there will be over-
lap vectors according to the same reference annotation com-
puted for methods 1, 2 and 3 to finally have all method
vectors computed in a training vector. In addition, there
will be eight training vectors computed, because of eight
annotations taken as reference annotations, where also the
manual annotation PER is included.

l dA l a r

drl y ln e A adyS

y. r S ynM ed

 d n re y a dlS y A l

se y. S l M n aaAy d wdrr l

n yeS dy
dl ralA

M1.LOC1
M1.PER1

M2.PER1

M4.PER1

M3.LOC1
drl y ln e A adyS

yS endy
M3.PER1

text

method 1

method 2

method 3

method 4

manual PER

M4.PER2

ail(
M2.PER1,M4PER

) =
1

2
(6 + 6) = 6.00

aiia(
M2.PER1,M4PER

) =
1

2

(6

10
+

6

6

)
= 0.80

aiir(
M2.PER1,M4PER

) =
1

2

(6

13
+

6

13

)
.
= 0.46

PER avg.
score
vector

ail
6.00

aiia
0.80

aiir
0.46

avg.
confidence

0.00

confidence
variance

0.00

MISC avg.
score
vector

00000

LOC avg.
score
vector

00000

ORG avg.
score
vector

00000

method 4
vector

annotation
type

NULL

Figure 9: Example of overlap vector computation

The last two components in the training vector were the
correct answer (i.e., the correct annotation type taken from
manual annotation) and a special preprocessing vector (Fig-
ure 6). The preprocessing vector included three components:
ail, aiia and aiir, which described the intersection of the ref-
erence annotation when it was correct with the correct an-
swer. If the reference annotation was not correct the values
of the preprocessing vector components were set to zero.

The number of learning features depended on the number
of combined methods, since for each involved method a new
method vector was computed and included into the training
vector. There were some features, which were less or more
important or not important at all. The effect of specific
learning features is discussed later.

4.3 Training Data Preprocessing
Training data was generated automatically as a collection

of training vectors, which needed further processing prior to
apply ML algorithms. There have been duplicate training
vectors removed in order to eliminate distortion in training
and validation process thus getting a more balanced classi-
fication model.

According to the preprocessing vector (Figure 6), there
have been training vectors removed, in which the annota-
tion type attribute in the annotation vector was correct but
the aiir attribute in the preprocessing vector was not equal
to 1.0, i.e., the bounds of the reference annotation were not
equal to the bounds of the correct answer. In previous ver-
sions, we tried to accept all the training vectors whose aiir
attribute was at least 0.95, i.e., the reference annotation
overlapped with the correct answer at least on 95%, but
this led to models with lower precision.

We have removed also several attributes, which led to zero
information gain and which were not useful for the classifica-
tion, i.e., attributes with the same value for all the training
vectors. They were usually average confidence and variance
of the average confidence scores, because some NE recog-

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 38

Table 3: Performance of classification models built
by different algorithms

Model AUROC ACC F1

Decision Tree J48 0.939 0.969 0.938
Random Forest 0.927 0.972 0.925
Bagging 0.912 0.972 0.908
Multilayer Perceptron 0.895 0.955 0.890
Dagging 0.889 0.922 0.880
Bayess Net 0.857 0.954 0.865
RBF Network 0.850 0.923 0.835
AdaBoost.M1 0.811 0.804 0.750
Naive Bayes 0.797 0.919 0.814

nizers did not provide annotation confidence information,
hence both attributes were always zero and therefore also
their information gain. Due to same reasons, we have re-
moved also attributes, which contained information in less
than 3% of records. Attributes of the preprocessing vector
have been also removed.

The preprocessing phase had significantly reduced the size
of training data and therefore memory requirements as well
as it had sped up the training process. It started with a set
of ∼ 63, 000 training vectors with ∼ 200 attributes and fin-
ished on ∼ 31, 000 unique records with ∼ 100 highly relevant
attributes.

4.4 Model Training and Evaluation
We have tried several algorithms to train different classi-

fication model candidates, which we compared according to
the F1 score. We have also examined AUROC and ACC
(accuracy) measures. All these three measures were ob-
tained from 10-fold cross validation of the model candidates
over the training dataset. Cross validation served as a good
method for identifying suitable model candidates, because
it avoided an effect of overfitting without a need of another
test dataset. The best performance has been achieved by DT
classification model built with J4810 algorithm (DTJ48) fol-
lowed by RF [3] model. The third was a classification model
based on REPTree (Reduced Error Pruned Tree) built with
Bagging algorithm (Table 3). We have focused on the first
two best performing algorithms and built several classifica-
tion models while varying some of input parameters of these
algorithms in order to gain precision and recall. It was Min-
imum Number of Instances per Leaf parameter (hereinafter
parameter ”M”) for DTJ48 and number of trees for RF. The
classification models were evaluated using a hold-out val-
idation method over the test dataset. Evaluation results
are displayed in Table 4. The best performing were mod-
els based on RF, which outperformed models based on DT,
baseline recognizer and all the underlying NE recognizers.
We can see that recall and precision have been growing with
the number of trees in the RF models and continued to con-
verge to 79% and 76% respectively. This behavior is more
obvious in Figure 10, where F1 measures are depicted for
particular NE classes according to the variated number of
trees. Dashed lines indicate score of the baseline model.

Evaluation results of models built with J48 algorithm
(C4.5), while varying the M parameter, are displayed in Fig-
ure 11. We can see that the F1 score for LOC has been ap-
proaching the baseline score similarly as it was for RF algo-
rithm while varying the number of trees parameter. Anal-
ogous behavior can be seen in Macro and Micro average
scores. In ORG and PER classification the score was higher

10J48 is an implementation of C4.5 algorithm

Table 4: Evaluation of classification models over the
test dataset

F1 Macro avg. Micro avg.

Model LOC MISC ORG PER P R F1 P R F1

RF N400 0.60 0.23 0.49 0.88 0.60 0.53 0.55 0.79 0.76 0.77
RF N300 0.60 0.23 0.49 0.88 0.60 0.53 0.55 0.79 0.76 0.77
RF N200 0.59 0.24 0.48 0.88 0.60 0.53 0.55 0.79 0.76 0.77
RF N100 0.58 0.23 0.48 0.88 0.59 0.53 0.54 0.79 0.76 0.77
RF N9 0.57 0.26 0.47 0.87 0.55 0.54 0.54 0.76 0.76 0.76
RF N21 0.55 0.26 0.47 0.87 0.56 0.53 0.54 0.77 0.76 0.76
RF N17 0.56 0.26 0.48 0.88 0.56 0.54 0.54 0.77 0.76 0.76
RF N14 0.55 0.26 0.46 0.88 0.55 0.53 0.54 0.76 0.76 0.76
RF N11 0.57 0.25 0.46 0.87 0.56 0.53 0.54 0.76 0.76 0.76
DTJ48 M13 0.57 0.36 0.36 0.87 0.60 0.52 0.54 0.78 0.73 0.75
RF N7 0.56 0.25 0.44 0.87 0.53 0.53 0.53 0.75 0.76 0.75
DTJ48 M11 0.59 0.27 0.40 0.86 0.56 0.51 0.53 0.77 0.73 0.75
DTJ48 M9 0.55 0.29 0.39 0.86 0.55 0.51 0.52 0.77 0.72 0.75
DTJ48 M7 0.57 0.23 0.41 0.86 0.53 0.51 0.52 0.75 0.73 0.74
RF N5 0.53 0.22 0.42 0.86 0.51 0.52 0.51 0.73 0.75 0.74
Baseline 0.61 0.29 0.30 0.84 0.69 0.44 0.51 0.83 0.67 0.74
DTJ48 M5 0.54 0.23 0.43 0.85 0.53 0.51 0.51 0.75 0.72 0.74
#MSM2013 21 3 0.50 0.31 0.41 0.83 0.51 0.53 0.51 0.70 0.73 0.71
DTJ48 M2 0.45 0.31 0.37 0.84 0.50 0.49 0.49 0.71 0.71 0.71
RF N3 0.50 0.20 0.37 0.85 0.46 0.50 0.48 0.68 0.73 0.71
RF N2 0.51 0.15 0.33 0.84 0.44 0.49 0.46 0.64 0.71 0.68

than the baseline or at least the same. We cannot say, that
it has been growing with the parameter M. The same applies
for MISC, where the F1 score varied around the baseline. In
general, increasing minimum number of instances per leaf
in DT (parameter M) led to models with higher recall and
precision. There were four classification models, which have
slightly outperformed the baseline model, but not as much
as the RF models.

The #MSM2013 21 3 model in the Table 4 is our submis-
sion to the #MSM2013 IE Challenge [24]. This model was
one of our early models, which were based on groundwork
of this paper. The model has finished on the second place in
the challenge loosing 1% in F1 on a winner Habib et. al [9].
Results of this model in the table may be slightly worse than
the official challenge results11, since we have used more strict
evaluation criteria. We did not accept partially correct con-
secutive annotations; i.e., PER/Christian PER/Bale was in-
correct, while PER/Christian Bale was correct. For a better

11http://oak.dcs.shef.ac.uk/msm2013/ie_challenge/
results/challenge_results_summary.pdf

2 5 10 20 50 100 200

0.
50

0.
54

0.
58

LOC

Trees

F1

2 5 10 20 50 100 200

0.
16

0.
20

0.
26

MISC

Trees

F1

2 5 10 20 50 100 200

0.
30

0.
35

0.
45

ORG

Trees

F1

2 5 10 20 50 100 200

0.
84

0.
86

0.
88

PER

Trees

F1

2 5 10 20 50 100 200

0.
46

0.
50

0.
54

Macro

Trees

F1

2 5 10 20 50 100 200

0.
68

0.
72

0.
76

Micro

Trees

F1

Figure 10: Impact on F1 while varying number of
trees for Random Forest algorithm

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 39

2 4 6 8 10 12

0.
45

0.
50

0.
55

0.
60

LOC

M
F1

2 4 6 8 10 12

0.
24

0.
28

0.
32

0.
36

MISC

M

F1

2 4 6 8 10 12

0.
30

0.
34

0.
38

0.
42

ORG

M

F1

2 4 6 8 10 12

0.
84
0

0.
85
5

0.
87
0

PER

M

F1

2 4 6 8 10 12

0.
49

0.
51

0.
53

Macro

M

F1

2 4 6 8 10 12

0.
71

0.
73

0.
75

Micro

M

F1

Figure 11: Impact on F1 while varying parameter M
for Decision Tree J48 (C4.5) algorithm

comparison of the models, we present precision, recall and
F1 measures of the best performing model – RF N400, best
DT model – DTJ48 M13, baseline recognizer and the three
best performing NE recognizers in Figure 12. The gain in
precision of the RF N400 model with respect to the NE rec-
ognizer with the highest precision – Stanford NER was 18%.
However, the baseline recognizer had higher precision than
RF N400 by 4%. Model based on DT – DTJ48 M13 was
the third best in precision followed by Stanford NER. The
highest score in recall among the combined NE recognizers
has been achieved by Illinois NET reaching 69%. The gain
in recall of the RF N400 model with respect to Illinois NET
was 10%. RF N400 reached the highest score in recall fol-
lowed by DTJ48 M13 and Illinois NET. Stanford NER and
the baseline recognizer shared the fourth place.

The highest score in F1 measure among the combined NE
recognizers has been achieved by Illinois NET and Stan-
ford NER, which both reached 67%. The gain in F1 of
RF N400 with respect to them was 15%. RF N400 model
with 400 trees has outperformed also the second DTJ48 M13
model and the third baseline recognizer, whose gain was
10%. A comparison on NE class basis is depicted in Fig-
ure 13. We did not include the baseline recognizer in the
charts, since it is represented there by its NE recognizers
(see Section 4.1). Our RF N400 model was the best in rec-
ognizing two most occurring entity classes in the test dataset
– ORG and PER. It has gained 7% and 5% with respect to
Illinois Wikifier and Illinois NET respectively. The best in
recognizing LOC entities was Open Calais, on which the
RF N400 model lost 1%. The MISC entity type was a do-
main of the DTJ48 M13 model, which has gained 24% with
respect to the second Open Calais.

Closer analysis of annotation results has shown, that there
have been many results correctly classified, but they did
not exactly match position in text; i.e., results were par-
tially correct. Therefore we tried to apply post-processing
and trimmed non-alphabetical characters off the results. We
have also removed definite articles from LOC and PER re-
sults. Moreover, we have removed titles from PER results;
e.g., Dr., Mr. or Sir. Evaluation of models with this sim-

B
as
el
in
e

R
F

N
40

0

D
TJ

48
 M

13

S
ta

nf
or

d
N

E
R

O
pe

n
C

al
ai

s

Ill
in

oi
s

N
E

T

Precision

0.55

0.60

0.65

0.70

0.75

0.80

0.85 0.
83

0.
79

0.
78

0.
67

0.
66

0.
65

R
F

N
40

0

D
TJ

48
 M

13

Ill
in

oi
s

N
E

T

B
as
el
in
e

S
ta

nf
or

d
N

E
R

O
pe

n
C

al
ai

s

Recall

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.
76

0.
73

0.
69

0.
67

0.
67

0.
60

R
F

N
40

0

D
TJ

48
 M

13

B
as
el
in
e

Ill
in

oi
s

N
E

T

S
ta

nf
or

d
N

E
R

O
pe

n
C

al
ai

s

F1

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.
77

0.
75

0.
74

0.
67

0.
67

0.
63

Figure 12: Comparison of the three best NE recog-
nizers with the baseline recognizer and our two best
performing models RF N400 and DTJ48 M13

Table 5: Evaluation of classification models using
post-processing (PP) over the test dataset

F1 Macro avg. Micro avg.

Model LOC MISC ORG PER P R F1 P R F1

C4.5M13 PP + RF N400 PP 0.61 0.36 0.56 0.88 0.66 0.58 0.60 0.80 0.78 0.79
RF N400 PP 0.61 0.25 0.56 0.88 0.63 0.55 0.58 0.80 0.77 0.79
DTJ48 M13 PP 0.58 0.36 0.44 0.88 0.63 0.54 0.56 0.80 0.75 0.77
RF N400 0.60 0.23 0.49 0.88 0.60 0.53 0.55 0.79 0.76 0.77
DTJ48 M13 0.57 0.36 0.36 0.87 0.60 0.52 0.54 0.78 0.73 0.75
Baseline 0.61 0.29 0.30 0.84 0.69 0.44 0.51 0.83 0.67 0.74
#MSM2013 21 3 0.50 0.31 0.41 0.83 0.51 0.53 0.51 0.70 0.73 0.71

ple post-processing (PP) is displayed in Table 5. We have
applied post-processing on the best versions of RF and DT
models. The gain in F1 with respect to models without post-
processing was 3%. Finally, we tried to build up a model by
combining our best models, which were RF N400 PP for
LOC, ORG, PER NE classes and DTJ48 M13 PP for MISC
class. This model had better performance in MISC recogni-
tion, but the overall improvement was not markable, because
the occurrence of MISC entities in the test dataset was very
low, thus it did not significantly affect the F1 score.

5. DISCUSSION AND FUTURE WORK
The structure of the best models (DTJ48 M13 and

RF N400) is based on DTs, which use rules always related
to one input attribute. This could present a weakness of

O
pe

n
C

al
ai

s

R
F

N
40

0

D
TJ

48
 M

13

S
ta

nf
or

d
N

E
R

Ill
in

oi
s

N
E

T

A
N
N
IE

A
pa

ch
e

O
pe

nN
LP

Ill
in

oi
s

W
ik

ifi
er

W
ik

ip
ed

ia
 M

in
er

M
is
ci
na
to
r

LOC

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0.
61

0.
60

0.
57

0.
51

0.
50

0.
48

0.
38

0.
34

0.
29

0.
00

D
TJ

48
 M

13

O
pe

n
C

al
ai

s

R
F

N
40

0

M
is
ci
na
to
r

Ill
in

oi
s

W
ik

ifi
er

Ill
in

oi
s

N
E

T

W
ik

ip
ed

ia
 M

in
er

S
ta

nf
or

d
N

E
R

A
N
N
IE

A
pa

ch
e

O
pe

nN
LP

MISC

0.0

0.1

0.2

0.3

0.4 0.
36

0.
29

0.
23

0.
19

0.
09

0.
06

0.
04

0.
00

0.
00

0.
00

R
F

N
40

0

Ill
in

oi
s

W
ik

ifi
er

D
TJ

48
 M

13

Ill
in

oi
s

N
E

T

O
pe

n
C

al
ai

s

S
ta

nf
or

d
N

E
R

W
ik

ip
ed

ia
 M

in
er

A
N
N
IE

A
pa

ch
e

O
pe

nN
LP

M
is
ci
na
to
r

ORG

0.0

0.1

0.2

0.3

0.4

0.5 0.
49

0.
46

0.
36

0.
32

0.
30

0.
30

0.
29

0.
19

0.
13

0.
00

R
F

N
40

0

D
TJ

48
 M

13

Ill
in

oi
s

N
E

T

S
ta

nf
or

d
N

E
R

O
pe

n
C

al
ai

s

Ill
in

oi
s

W
ik

ifi
er

A
N
N
IE

W
ik

ip
ed

ia
 M

in
er

A
pa

ch
e

O
pe

nN
LP

M
is
ci
na
to
r

PER

0.0

0.2

0.4

0.6

0.8

0.
88

0.
87

0.
84

0.
82

0.
69

0.
68

0.
68

0.
67

0.
64

0.
00

Figure 13: Comparison of the combined NE rec-
ognizers with our two best performing models
RF N400 and DTJ48 M13 by F1 and NE class

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 40

these models. One possible solution could be to use multi-
variate DTs, which support multiple attributes per node in
a tree and can handle also correlated attributes [10]. The
drawback of using multivariate DTs is in the time needed to
built them, but on the other hand their time performance is
higher, because they do not test the same attribute multiple
times. We expect that such models could better utilize the
potential of data and therefore could be also more accurate
than RF or DT models.

6. CONCLUSIONS
We have shown an approach of combining NE recognizers

based on diverse methods on a task of NER in microposts
and examined several ML techniques for the combination of
text and annotation features produced by the recognizers.
The best performing were RF and DT based on C4.5 algo-
rithm. Combination models produced by these algorithms
have achieved performance superior to that of underlying
NE recognizers as well as the baseline recognizer, which was
built of the best performing NE recognizers for each target
NE class. The best of our combination models was RF N400,
an RF model with 400 trees. Its gain in F1 with respect to
the best individual NE recognizer was 15% and with respect
to the baseline recognizer 4%. Performance of the RF and
DT models indicated that ML techniques lead to more fa-
vorable combination of underlying NE recognizers than it
was done manually in the baseline NE recognizer. The ad-
vantage of the ML models is that they can adapt to actual
text according to its features and annotations from under-
lying NE recognizers, as well as benefit from given negative
examples.

7. ACKNOWLEDGMENTS
This work was supported by projects VEGA 2/0185/13,

VENIS FP7-284984 and CLAN APVV-0809-11.

8. REFERENCES
[1] A. E. C. Basave, A. Varga, M. Rowe, M. Stankovic,

and A.-S. Dadzie. Making sense of microposts
(#msm2013) concept extraction challenge. In Making
Sense of Microposts (#MSM2013) Concept Extraction
Challenge, pages 1–15, 2013.

[2] K. Bontcheva and D. Rout. Making sense of social
media streams through semantics: a survey. Semantic
Web, 2012.

[3] L. Breiman. Random forests. Mach. Learn.,
45(1):5–32, Oct. 2001.

[4] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. ACL’02. ACL, 2002.

[5] S. Dlugolinsky, M. Ciglan, and M. Laclavik.
Evaluation of named entity recognition tools on
microposts. INES 2013. IEEE, 2013.

[6] D. Etter, F. Ferraro, R. Cotterell, O. Buzek, and
B. Van Durme. Nerit: Named entity recognition for
informal text. Technical report, Technical Report 11,
HLTCE, Johns Hopkins University, July 2013.

[7] J. R. Finkel, T. Grenager, and C. Manning.
Incorporating non-local information into information
extraction systems by gibbs sampling. ACL ’05, pages
363–370, Stroudsburg, PA, USA, 2005. ACL.

[8] R. Florian, A. Ittycheriah, H. Jing, and T. Zhang.
Named entity recognition through classifier
combination. CONLL ’03, pages 168–171,
Stroudsburg, PA, USA, 2003. ACL.

[9] M. Habib, M. V. Keulen, and Z. Zhu. Concept
extraction challenge: University of Twente at
#msm2013. In Making Sense of Microposts
(#MSM2013) Concept Extraction Challenge, pages
17–20, 2013.

[10] T. S. Korting. C4. 5 algorithm and multivariate
decision trees, image processing division. National
Institute for Space Research–INPE São José dos
Campos–SP, Brazil, 2006.

[11] C. Li, J. Weng, Q. He, Y. Yao, A. Datta, A. Sun, and
B.-S. Lee. Twiner: Named entity recognition in
targeted twitter stream. SIGIR ’12, pages 721–730,
New York, NY, USA, 2012. ACM.

[12] X. Liu, S. Zhang, F. Wei, and M. Zhou. Recognizing
named entities in tweets. HLT ’11, pages 359–367,
Stroudsburg, PA, USA, 2011. ACL.

[13] E. Marsh and D. Perzanowski. Muc-7 evaluation of ie
technology: Overview of results. MUC-7, April 1998.

[14] D. Milne and I. H. Witten. An open-source toolkit for
mining wikipedia. Artif. Intell., 194:222–239, 2013.

[15] J. R. Quinlan. C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

[16] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning.
Labeled lda: A supervised topic model for credit
attribution in multi-labeled corpora. EMNLP ’09,
pages 248–256, Stroudsburg, PA, USA, 2009. ACL.

[17] L. Ratinov and D. Roth. Design challenges and
misconceptions in named entity recognition. CoNLL
’09, pages 147–155. ACL, 2009.

[18] L. Ratinov, D. Roth, D. Downey, and M. Anderson.
Local and global algorithms for disambiguation to
wikipedia. HLT ’11, pages 1375–1384. ACL, 2011.

[19] A. Ritter, S. Clark, Mausam, and O. Etzioni. Named
entity recognition in tweets: An experimental study.
EMNLP ’11, pages 1524–1534, Stroudsburg, PA, USA,
2011. ACL.

[20] S. Saha and A. Ekbal. Combining multiple classifiers
using vote based classifier ensemble technique for
named entity recognition. Data Knowl. Eng.,
85:15–39, May 2013.

[21] L. Si, T. Kanungo, and X. Huang. Boosting
performance of bio-entity recognition by combining
results from multiple systems. BIOKDD ’05, pages
76–83, New York, NY, USA, 2005. ACM.

[22] E. F. Tjong Kim Sang and F. De Meulder.
Introduction to the conll-2003 shared task:
language-independent named entity recognition.
CONLL ’03, pages 142–147, Stroudsburg, PA, USA,
2003. ACL.

[23] L. Todorovski and S. Džeroski. Combining classifiers
with meta decision trees. Machine Learning,
50(3):223–249, 2003.

[24] Štefan Dlugolinský, P. Krammer, M. Ciglan, and
M. Laclav́ık. MSM2013 IE Challenge: Annotowatch.
In Making Sense of Microposts (#MSM2013) Concept
Extraction Challenge, pages 21–26, 2013.

· #Microposts2014 · 4th Workshop on Making Sense of Microposts · @WWW2014 41

	Preface
	Combining Named Entity Recognition Methods for Concept Extraction in Microposts Štefan Dlugolinský, Peter Krammer, Michal Laclavík & Ladislav Hluchý

